skip to main content


Search for: All records

Creators/Authors contains: "Ye, Kaiming"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Induced pluripotent stem cells (iPSCs) have enormous potential in producing human tissues endlessly. We previously reported that type V collagen (COL5), a pancreatic extracellular matrix protein, promotes islet development and maturation from iPSCs. In this study, we identified a bioactive peptide domain of COL5, WWASKS, through bioinformatic analysis of decellularized pancreatic ECM (dpECM)-derived collagens. RNA-sequencing suggests that WWASKS induces the formation of pancreatic endocrine progenitors while suppressing the development of other types of organs. The expressions of hypoxic genes were significantly downregulated in the endocrine progenitors formed under peptide stimulation. Furthermore, we unveiled an enhancement of iPSC-derived islets’ (i-islets) glucose sensitivity under peptide stimulation. These i-islets secrete insulin in a glucose responsive manner. They were comprised of α, β, δ, and γ cells and were assembled into a tissue architecture similar to that of human islets. Mechanistically, the peptide is able to activate the canonical Wnt signaling pathway, permitting the translocation of β-catenin from the cytoplasm to the nucleus for pancreatic progenitor development. Collectively, for the first time, we demonstrated that an ECM-derived peptide dictates iPSC fate toward the generation of endocrine progenitors and subsequent islet organoids. 
    more » « less
  2. Abstract The ongoing COVID-19 global pandemic has necessitated evaluating various disinfection technologies for reducing viral transmission in public settings. Ultraviolet (UV) radiation can inactivate pathogens and viruses but more insight is needed into the performance of different UV wavelengths and their applications. We observed greater than a 3-log reduction of SARS-CoV-2 infectivity with a dose of 12.5 mJ/cm 2 of 254 nm UV light when the viruses were suspended in PBS, while a dose of 25 mJ/cm 2 was necessary to achieve a similar reduction when they were in an EMEM culture medium containing 2%(v/v) FBS, highlighting the critical effect of media in which the virus is suspended, given that SARS-CoV-2 is always aerosolized when airborne or deposited on a surface. It was found that SARS-CoV-2 susceptibility (a measure of the effectiveness of the UV light) in a buffer such as PBS was 4.4-fold greater than that in a cell culture medium. Furthermore, we discovered the attenuation of UVC disinfection by amino acids, vitamins, and niacinamide, highlighting the importance of determining UVC dosages under a condition close to aerosols that wrap the viruses. We developed a disinfection model to determine the effect of the environment on UVC effectiveness with three different wavelengths, 222 nm, 254 nm, and 265 nm. An inverse correlation between the liquid absorbance and the viral susceptibility was observed. We found that 222 nm light was most effective at reducing viral infectivity in low absorbing liquids such as PBS, whereas 265 nm light was most effective in high absorbing liquids such as cell culture medium. Viral susceptibility was further decreased in N95 masks with 222 nm light being the most effective. The safety of 222 nm was also studied. We detected changes to the mechanical properties of the stratum corneum of human skins when the 222 nm accumulative exposure exceeded 50 J/cm 2 .The findings highlight the need to evaluate each UV for a given application, as well as limiting the dose to the lowest dose necessary to avoid unnecessary exposure to the public. 
    more » « less
  3. Decellularization of natural tissues to produce extracellular matrix is a promising method for three-dimensional scaffolding and for understanding microenvironment of the tissue of interest. Due to the lack of a universal standard protocol for tissue decellularization, recent investigations seek to develop novel methods for whole or partial organ decellularization capable of supporting cell differentiation and implantation towards appropriate tissue regeneration. This review provides a comprehensive and updated perspective on the most recent advances in decellularization strategies for a variety of organs and tissues, highlighting techniques of chemical, physical, biological, enzymatic, or combinative-based methods to remove cellular contents from tissues. In addition, the review presents modernized approaches for improving standard decellularization protocols for numerous organ types. 
    more » « less
  4. Tissue microenvironments are rich in signaling molecules. However, factors in the tissue matrix that can serve as tissue-specific cues for engineering pancreatic tissues have not been thoroughly identified. In this study, we performed a comprehensive proteomic analysis of porcine decellularized pancreatic extracellular matrix (dpECM). By profiling dpECM collected from subjects of different ages and genders, we showed that the detergent-free decellularization method developed in this study permits the preservation of approximately 62.4% more proteins than a detergent-based method. In addition, we demonstrated that dpECM prepared from young pigs contained approximately 68.5% more extracellular matrix proteins than those prepared from adult pigs. Furthermore, we categorized dpECM proteins by biological process, molecular function, and cellular component through gene ontology analysis. Our study results also suggested that the protein composition of dpECM is significantly different between male and female animals while a KEGG enrichment pathway analysis revealed that dpECM protein profiling varies significantly depending on age. This study provides the proteome of pancreatic decellularized ECM in different animal ages and genders, which will help identify the bioactive molecules that are pivotal in creating tissue-specific cues for engineering tissues in vitro. 
    more » « less
  5. Abstract

    In vitro differentiation of human induced pluripotent stem cells (iPSCs) into functional islets holds immense potential to create an unlimited source of islets for diabetes research and treatment. A continuous challenge in this field is to generate glucose-responsive mature islets. We herein report a previously undiscovered angiopoietin signal for in vitro islet development. We revealed, for the first time, that angiopoietins, including angiopoietin-1 (Ang1) and angiopoietin-2 (Ang2) permit the generation of islets from iPSCs with elevated glucose responsiveness, a hallmark of mature islets. Angiopoietin-stimulated islets exhibited glucose synchronized calcium ion influx in repetitive glucose challenges. Moreover, Ang2 augmented the expression of all islet hormones, including insulin, glucagon, somatostatin, and pancreatic polypeptide; and β cell transcription factors, including NKX6.1, MAFA, UCN3, and PDX1. Furthermore, we showed that the Ang2 stimulated islets were able to regulate insulin exocytosis through actin-filament polymerization and depolymerization upon glucose challenge, presumably through the CDC42-RAC1-gelsolin mediated insulin secretion signaling pathway. We also discovered the formation of endothelium within the islets under Ang2 stimulation. These results strongly suggest that angiopoietin acts as a signaling molecule to endorse in vitro islet development from iPSCs.

     
    more » « less
  6. Abstract

    A 3D microenvironment is known to endorse pancreatic islet development from human induced pluripotent stem cells (iPSCs). However, oxygen supply becomes a limiting factor in a scaffold culture. In this study, oxygen‐releasing biomaterials are fabricated and an oxygenated scaffold culture platform is developed to offer a better oxygen supply during 3D iPSC pancreatic differentiation. It is found that the oxygenation does not alter the scaffold's mechanical properties. The in situ oxygenation improves oxygen tension within the scaffolds. The unique 3D differentiation system enables the generation of islet organoids with enhanced expression of islet signature genes and proteins. Additionally, it is discovered that the oxygenation at the early stage of differentiation has more profound impacts on islet development from iPSCs. More C‐peptide+/MAFA+β and glucagon+/MAFB+α cells formed in the iPSC‐derived islet organoids generated under oxygenated conditions, suggesting enhanced maturation of the organoids. Furthermore, the oxygenated 3D cultures improve islet organoids’ sensitivity to glucose for insulin secretion. It is herein demonstrated that the oxygenated scaffold culture empowers iPSC islet differentiation to generate clinically relevant tissues for diabetes research and treatment.

     
    more » « less